热心网友
回答时间:2024-10-30 12:54
不用证明了
从递推关系式An=3n-1+An-1(n≥2)
就能看出An是形如an^2+bn+c的类型了
这种递推求数列通项的方法主要有这几种:
两边求和:
∑Ai=∑[3i-1+A(i-1)]=∑(3i-1)+∑A(i-1)
其中求和对i从2-n
那么相减得到An=∑(3i-1)+A1
其中求和对i从2-n
搞定An=1/2*[3n^2+n-2]
或者用待定系数法:
设An-[an^2+bn]=A(n-1)-[a(n-1)^2+b(n-1)]
展开变成An=A(n-1)+2an+(b-a)
和An=3n-1+An-1
进行比较得到a=3/2,b=1/2
这说明An-[3/2*n^2+1/2*n]是以A1-2=-1为首项的常数列
于是An=3/2*n^2+1/2*n-1
收起